Using the HathiTrust Research Center’s Tools for Text Analysis
All workshop-related files are at: http://bit.ly/1T3lu9B

Handouts and slides will also be posted there within a few days.

http://bit.ly/1T3lu9B
Sayan Bhattacharyya
Postdoctoral Research Associate (CLIR Fellow)
Graduate School of Library and Information Science
University of Illinois at Urbana-Champaign
HathiTrust ecosystem

HathiTrust Digital Library

Access

Formulate

Gather

Analyze

Produce

Disseminate

Collect

Preserve

HathiTrust Research Center
HathiTrust ecosystem

HathiTrust Digital Library

Preserve
Collect
Disseminate

Access
Formulate
Gather
Analyze

HathiTrust Research Center
About the HathiTrust Digital Library

• Repository
 – 13+ million volumes | 3+ billion pages
 – 50% of volumes are in English
 – Material from the 15th C. on | 20th C. concentration
 – 70% in copyright or undetermined | 30% open

• Interface
 – Search and read books in the public domain
HathiTrust ecosystem
HTRC for Text Analysis

Digitized text

Scanned & OCR-ed

Computational methods

E.g. Word counts, classification, topic modeling

Analysis

HathiTrust Research Center

at scale from HTDL

provided tools and services
About the HTRC

Part content provider (digitized text)
- Early English Books Online
- JSTOR Data for Research
- *Etc...*

Part tool provider (computational methods)
- Voyant
- MALLET
- *Etc.*

We provide access to textual data from the HTDL and a suite of services to analyze it.

And more!
Non-consumptive research paradigm

Technology-aided research that allows for distant, computational analysis without permitting close, human reading.

- Complies with copyright law
 - Ideas vs Expressions
- Foundation underlying structure of HTRC work
- Other terms: non-expressive use
HT Points of Access

• HTRC Portal and Workset Builder
• HTRC Data Capsule
• HathiTrust Digital Library
 – HT data request
 – HathiFiles
 – Bibliographic and Data APIs
• HTRC datasets
 – Extracted Features dataset
 – Genre in English Language Literature (Underwood)
• HT+BW
Portal & Workset Builder

A set of tools for assembling collections of digitized text and performing text analysis on them
Using the HTRC Portal

• Create account with institutional ID
 – From non-profit institution of higher-ed

• Gateway to:
 – Workset Builder
 – Access HTRC Data Capsule
 – Extracted Features and genre datasets

• Access to:
 – Existing worksets (collections)
 – Off-the-shelf algorithms
A workset is a user-created collection of text from the HathiTrust Digital Library.

- Textual datasets
- Built through searching OCR data and/or metadata
 - In full text and titles
 - By author, time period, subject classification, etc.
- Currently Workset Builder includes non-copyrighted material NOT digitized by Google
Why worksets?

• Worksets allow a researcher to curate subcorpora of text relevant to her
• Building research collections is familiar activity for humanists
• Worksets can be shared and cited
HTRC Algorithms

• Functions for text analysis
• Extract, refine, analyze, and visualize textual data
• Built-in to Portal
 – Some customization/optimization available, but mostly static tools
 – For users who don’t require, or don’t know how to write, personalized algorithms
HTRC Algorithms

Extracted Features Rsync Script Generator

MARC Downloader

Meandre **Classification** Naïve Bayes

Meandre **Dunning Log-Likelihood** to Tag Cloud

Meandre **OpenNLP Date Entities** to Simile

Meandre **OpenNLP Entities List**

Meandre **OpenNLP Report** per Volume

Meandre **Tag Cloud**

Meandre **Tag Cloud with Cleaning**

Meandre **Topic Modeling**

Simple Deployable **Word Count**
Basic Portal Workflow

1. Log in to HTRC Portal
2. View existing worksets
3. Enter **Workset Builder**
4. Search for volumes
5. Select volumes
6. Compile workset
7. Return to HTRC Portal
8. Select algorithm
9. Run algorithm
10. View results
Welcome to the HathiTrust Research Center!

The HathiTrust Research Center (HTRC) provides research access to the public domain corpus of the HathiTrust Digital Library. The HTRC is a collaborative research center launched jointly by Indiana University and the University of Illinois, along with the HathiTrust Digital Library, to help meet the technical challenges of dealing with massive amounts of digital text that researchers face by developing cutting-edge software tools and cyber-infrastructure to enable advanced computational access to the growing digital record of human knowledge. The HTRC provides an infrastructure to search, collect, analyze, and visualize the full text of nearly 3 million public domain works and is intended for nonprofit and educational researchers.

What would you like to do today?

- **Create Workset**
 - Create workset using our workset builder.

- **Upload Workset**
 - Upload a workset by specifying the necessary data about its volumes through a text file.

- **Browse Workset**
 - Browse through already created worksets.

- **Execute Algorithms**
 - Select and execute text analysis algorithms for word count to more sophisticated approaches.

https://sharc.hathitrust.org
HathiTrust!

HathiTrust is the domain corpus of the HathiTrust Digital Library. The HTRC is a project of the University of Illinois, along with the HathiTrust Digital Library, to help meet the needs of researchers by developing cutting-edge software tools and cyberinfrastructure. The HTRC provides an infrastructure to support research and is intended for nonprofit and educational researchers.

https://sharc.hathitrust.org
Sign in
Sign in

HathiTrust

The main corpus of the HathiTrust Digital Library. The HTRC is a collaboration of the University of Illinois, along with the HathiTrust Digital Library, to help meet the needs of researchers by developing cutting-edge software tools and cyberinfrastructure to access and share manuscripts of human knowledge. The HTRC provides an infrastructure to support research and is intended for nonprofit and educational researchers.
Choose to create workset

Welcome to the HathiTrust Research Center!

The HathiTrust Research Center (HTRC) provides research access to the public domain corpus of the HathiTrust Digital Library. The HTRC is a collaborative research center launched jointly by Indiana University and the University of Illinois, along with the HathiTrust Digital Library, to help meet the technical challenges of dealing with massive amounts of digital text researchers face by developing cutting-edge software tools and cyber-infrastructure to enable advanced computational access to the growing digital record of human knowledge. The HTRC provides an infrastructure to search, collect, analyze, and visualize the full text of nearly 3 million public domain works and is intended for nonprofit and educational researchers.
Log in to access Workset Builder

Create Workset

You need to log in to HTRC Workset Builder in order to create or modify a workset. This is not depends on whether you have already logged in to HTRC Portal or not.

Don’t Show This Again.
NB: Click “More options” for advanced search options
Workset Builder: Search Results

An author search for “Austen, Jane”.

Select all or some of the returned search items for your workset.

Filtering results by “Austen, Jane, 1775-1817” reduces results from 3,148 to a more manageable 390.
Once texts are selected, click “Selected Items”, located in upper right-hand menu
When you’re done selecting items, review your choices, and select “Create/Update Workset”
You can also alter or remove existing worksets by choosing “Manage Worksets”.

NB: you have the option to add selected items to an existing workset or to create a new workset.
Selected Items

1. **Emma, by Jane Austen.**
 - **Title:** Emma, by Jane Austen.
 - **Author:** Austen, Jane, 1775-1817.
 - **Format:** Book
 - **Language:** English
 - **Published:** 1908

2. **Mansfield Park / by Jane Austen.**
 - **Title:** Mansfield Park / by Jane Austen.
 - **Author:** Austen, Jane, 1775-1817.
 - **Format:** Book
 - **Language:** English
 - **Published:** 1901
Questions?
Using the Portal Algorithms

Welcome to the HathiTrust Research Center!

The HathiTrust Research Center (HTRC) provides research access to the public domain corpus of the HathiTrust Digital Library. This collaborative research center launched jointly by Indiana University and the University of Illinois, along with the HathiTrust Digital Library, to address the technical challenges of dealing with massive amounts of digital text that researchers face by developing cutting-edge software and infrastructure to enable advanced computational access to the growing digital record of human knowledge. The HTRC provides tools and services to search, collect, analyze, and visualize the full text of nearly 3 million public domain works and is intended for nonprofit and educational research uses.
Analysis in the HTRC Portal

<table>
<thead>
<tr>
<th>#</th>
<th>Name</th>
<th>Description</th>
<th>Author</th>
<th>Version</th>
<th>Execute</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EF_Rsync_Script_Generator</td>
<td>This algorithm generates a script to download the extracted features (EF) data for the specified workset. The script uses marc records for each volume in the input workset.</td>
<td>Colleen Fallaw</td>
<td>2.2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Marc_Downloader</td>
<td>This algorithm downloads marc records for each volume in the input workset.</td>
<td>Zong Peng</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Meandre_Classification_NaiveBayes</td>
<td>This analysis will perform NaiveBayes Classification. Given a workset (that was uploaded as a csv file) containing the workset information extraction is used to extract date entities that can be displayed on a timeline. This allows a researcher to view tagged data and provide this information in a table. We are using the OpenNLP.</td>
<td>Loretta Auville</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Meandre_Dunning_LogLikelihood_to_Tagcloud</td>
<td>This analysis calculates Dunning LogLikelihood based on the input of two worksets, an analysis workset and a reference workset. Information extraction is used to extract date entities that can be displayed on a timeline. This allows a researcher to review and provide this information in a table. We are using the OpenNLP.</td>
<td>Loretta Auville</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Meandre_OpenNLP_Date_Entities_To_Simile</td>
<td>Information extraction is used to extract date entities that can be displayed on a timeline. This allows a researcher to view and provide this information in a table. We are using the OpenNLP.</td>
<td>Loretta Auville</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Meandre_OpenNLP_Entities_List</td>
<td>Information extraction is used to extract named entities and provide this information in a table. We are using the OpenNLP.</td>
<td>Loretta Auville</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Meandre_Spellcheck_Report_Per_Volume</td>
<td>This spellcheck analysis will load data and create several reports with results of spellchecking. This version of spellcheck.</td>
<td>Loretta Auville</td>
<td>1.2</td>
<td></td>
</tr>
</tbody>
</table>
Prepare to run an algorithm

Information extraction is used to extract named entities and provide this information in a table. We are using the OpenNLP system to extract the entities from the text in an automated fashion. Loads each page of each volume from HTRC. Removes the first and last line of each page. Joins hyphenated words that occur at the end of the line. Extracts entity types specified from the text. Displays each entity with the volume_id, page_id, sentence_id and character position within the sentence. NOTE: The volume limit is 100.

Version: 1.2
Author: Loretta Auvil
Please enter a job name: (required)
testJobName

Please select a workset for analysis (required)

Select a workset from my worksets

The workset containing the volume ids to be used for analysis.

Please provide a comma separated list of entity types to be extracted. Acceptable values are: date, location, money, organization, percentage, person, time. (default: person) (optional)

person

The entity type to be extracted.

Submit
Prepare to run an algorithm

Description: Information extraction is used to extract named entities and provide this information in a table. We are using the OpenNLP system to extract the entities from the text in an automated fashion. Loads each page of each volume from HTRC. Removes the first and last line of each page. Joins hyphenated words that occur at the end of the line. Extracts entity types specified from the text. Displays each entity with the volume_id, page_id, sentence_id and character position within the sentence.

Version: 1.2

Author: Loretta Auvil

Please enter a job name: (required)

```
testJobName
```

Please select a workset for analysis (required)

- Select a workset from my workssets
- Select a workset from all workssets

```
Select a workset from my workssets
```

The workset containing the volume ids to be used for analysis.

Please provide a comma separated list of entity types to be extracted. Acceptable values are: date, location, money, organization, percentage, person, time. (default: person) (optional)

```
person
```

The entity type to be extracted.

Submit
Prepare to run an algorithm

Description: Information extraction is used to extract named entities and provide this information in a table. We are using the OpenNLP system to extract the entities from the text in an automated fashion. Loads each page of each volume from HTRC. Removes the first and last line of each page. Joins hyphenated words that occur at the end of the line. Extracts entity types specified from the text. Displays each entity with the volume_id, page_id, sentence_id and character position within the sentence.

Version: 1.2

Author: Loretta Auvil

Please enter a job name: (required)

testJobName

Please select a workset for analysis: (required)

1. Select a workset from my worksets
2. Select a workset from all worksets

Please provide a comma separated list of entity types to be extracted. Acceptable values are: date, location, money, organization, percentage, person, time. (default: person) (optional)

person

The entity type to be extracted.
Choose workset(s) for analysis
Run the analysis...

<table>
<thead>
<tr>
<th>Active Jobs(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job Name</td>
</tr>
<tr>
<td>----------------</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Completed Jobs(7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Job Name</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
</tbody>
</table>
View Results

<table>
<thead>
<tr>
<th>Name</th>
<th>Job ID</th>
<th>Algorithm</th>
<th>Last Updated</th>
<th>Status</th>
</tr>
</thead>
</table>

Input Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_top_tokens</td>
<td>200</td>
</tr>
<tr>
<td>num_topics</td>
<td>10</td>
</tr>
<tr>
<td>input_collection</td>
<td>play1@eleanordickson</td>
</tr>
</tbody>
</table>

Output

- topic_tagclouds.html
- stderr.txt
- stdout.txt
- topic_top_words.xml
HT Points of Access

• HTRC Portal and Workset Builder
• HTRC Data Capsule
• HathiTrust Digital Library
 – HT data request
 – HathiFiles
 – Bib and Data APIs
• HTRC datasets
 – Extracted Features dataset
 – Genre in English Language Literature (Underwood)
• HT+BW
HTRC Data Capsule

An environment for performing non-consumptive text analysis
Acknowledgements

• This research is funded through a grant from the Alfred P. Sloan Foundation
• This research is also based in part on work supported by the National Science Foundation and by Samsung.
• Special thanks to Samitha Liyanage, Milinda Pathirage, and Zong Peng at Indiana University, and Earlence Fernandes and Ajit Aluri at the University of Michigan for discussions contributing to this work.
HTRC v2.0

• There is a mismatch between what HTRC v2.0 provides and the needs of some users.
 – HTRC v2.0 provides predefined algorithms to users and runs them on their behalf.
 • This is to prevent leakage of copyrighted data.
 – However, users typically want:
 • to run their own algorithms
 • to examine the results interactively
 • The HTRC Data Capsule is being developed to:
 – strike a balance between:
 • preventing data leakage, and
 • keeping HTRC as flexible as possible to users.
Research Questions

• **Non-consumptive use**: can framework provide safe handling of large amounts of protected data?

• **Openness**: can framework support user-contributed analysis without resorting to code walkthroughs prior to acceptance?

• **Large-scale and low cost**: can protections be extended to utilization of large-scale national (public) computational resources?
HTRC Data Capsule

• Provisions virtual machines (VM) for researchers to run their algorithms over copyrighted data.
• Trusts researchers to not deliberately leak copyrighted data.
• Prevents malware acting on researcher’s behalf from leaking data.
HTRC Data Capsule Workflow
Secure Mode vs. Maintenance Mode
Run Experiments (Secure Mode)
Run Experiments (Secure Mode)
HTRC Data Capsule Access

Leak through transition?

Leak through network?
HTRC Data Capsule Architecture

Web front end

Web UI

User Authentication

Web Services

Audit

Hypervisor Scripts

Firewall

VM-1 ... VM-k

Host-1

... Host-N

VM-1 ... VM-k

Database

Image Store

Volume Store
Threat Model

• The user is trustworthy.
• The virtual machine manager and the host on which it runs are trusted.
• The VM is NOT trusted. We assume the possibility of malware being installed as well as other remotely initiated attacks on the VM, which are undetectable to the user.
Threat Model (Cont.)

- The VNC session and final result download are two channels for potential data leak. **BUT:**
 - For VNC session, we could encrypt the session to prevent eavesdropping.
 - For final result download, we could monitor traffic on the release channel as a means to automatically detect leakage.

- Covert channels between VMs on the same host could also potentially leak data.
 - In the future, we could run VMs on separated hosts to provide strong isolation.
HT Points of Access

- HTRC Portal and Workset Builder
- HTRC Data Capsule
- HathiTrust Digital Library
 - HT data request
 - HathiFiles
 - Bib and Data APIs
- HTRC datasets
 - Extracted Features dataset
 - Genre in English Language Literature (Underwood)
- HT+BW
Getting Data from the HTDL

• HathiTrust Digital Library
 – HathiFiles
 • Bibliographic metadata that can be useful for identifying volumes of interest
 – Bibliographic and Data APIs
 • Bib API – access bibliographic metadata
 • Data API – access content (images, OCR, and metadata)
 – HT data request
 • Request public domain content for research purposes
Extracted Features Dataset

A function for downloading selected data and metadata elements from a workset
Extracted Features (EF) dataset defined

• Downloadable page- and volume-level features extracted from a workset
 – Currently only pre-1923, public domain volumes available
 – Downloaded as JSON files

• Provides non-consumptive access at scale to volumes otherwise restricted by copyright
Extracted Features (EF) dataset: uses

• EF dataset includes part-of-speech-tagged words and their frequencies

• Any algorithm that works with "bags of words" will work with the EF dataset
 – Ex. topic modeling, Dunning’s log-likelihood estimation for “compare-and-contrast”,... etc.
Extracted Features (EF) Dataset: location

• Available at: https://sharc.hathitrust.org/features
Partial view of an EF data file json ("basic")

```
"features":{
  ...
  ...
  "header":{
    "tokenCount":7,
    "lineCount":3,
    ...
    "tokenPosCount":{
      "I.":{"NN":1},
      "THE":{"DT":1},
      "INTRODUCTION":{"NN":1},
      ....
      "AND":{"CC":1}}},

"body":{
  "tokenCount":205,
  "lineCount":35,
  "emptyLineCount":9,
  "sentenceCount":6,
  "tokenPosCount":{
    "striking":{"JJ":1},
    "London":{"NNP":1},
    "four":{"CD":1},
    ".":{".":7},
    "dramatic":{"JJ":2},
    "stands":{"VBZ":1},
    ...
    "growth":{"NN":1}
  }
},
"footer":{
```
Extracted Features (EF) data has utility even for out-of-copyight material

- Page-level extracted features (EF) provide "a sense of the content" of each workset at the level of individual works.

 - EF dataset allows the flexibility of developing/running one's own queries and algorithms against the text data, without depending on provided algorithms
A use case for “Basic” EF data

• Charles Dickens’ novels *Little Dorrit* and *Bleak House* are a bit similar...
 • ...in that they both speak about the injustices of the 19th century British judicial system.
 – However, *Little Dorrit* and *Bleak House* are also different.
 • *Little Dorrit*:
 – emphasis is on civil law rather than prisons.
 • *Bleak House*:
 – *prisons* and *incarceration* play an important role

• We can corroborate this using EF data for the two novels:
 • Count (using the ‘grep -o’ command at the shell command-line) the number of pages in which the word ‘prison’ occurs at least once, for:
 – the workset *LittleDorrit1*; and
 – for the workset *BleakHouse1*
 • Compare these two counts
Occurrences of “prison” in *Bleak House* and *Little Dorrit*

- Count (separately for *Little Dorrit* and *Bleak House*)
 - the number of pages in which the word ‘prison’ occurs at least once:

 - Downloaded EF dataset corresponding to the *LittleDorrit1* workset:
 `hvd.32044025670571.basic.json`
 - `grep -o prison hvd.32044025670571.basic.json | wc -l`
 » Returns: 173

 - Downloaded EF dataset corresponding to the *BleakHouse1* workset:
 `miun.aca8482,0001,001.basic.json`
 - `grep -o prison miun.aca8482,0001,001.basic.json | wc -l`
 » Returns: 29

- Compare these two counts:

 173 >> 29
 (‘Prison’ is way more prevalent in *Bleak House* than in *Little Dorrit* !)
 (Q.E.D.)
Occurrences of “prison” in *Bleak House* and *Little Dorrit* (caveats)

- We simply counted the occurrences of the word “prison” within each *json*. This does give us a rough estimate, but to make a precise, accurate computation, you should actually parse the json to count the *frequency* of occurrences of “prison”.

- Another simplification we made was to simply count occurrences of the exact word “prison”.

 - For a large sized sample, this ought not matter so much.
 - However, as an exercise, you may want to redo the activity by considering any expression that contains the string prison — e.g. “imprisonment”, “prisoner”, “prisons”, “prisoners”, *etc.*
Eric Lease Morgan, Digital Initiatives Librarian at the University of Notre Dame, has recently contributed a ‘Workset Browser’ toolkit

- Makes use of EF data for a workset to provide analysis of content and metadata information for that workset.
- Provides workset-level derived metadata and word usage statistics
- Provides visualizations (as well as text lists) of “‘big’ names” and “‘great’ ideas” occurring in the workset
- Walkthrough of a 32-item ‘Thoreau’ workset as example of what is possible.
Page-level maps of genre from English-language monographs in the HathiTrust Digital Library, 1700-1922
(Ted Underwood’s work)

Word Frequencies in English-Language Literature, 1700-1922

Genre-specific wordcounts for 178,381 volumes from the HathiTrust Digital Library [v.0.1]

Note that this is a beta data release. Please send feedback to tunder@illinois.edu.

Many of the questions scholars want to ask about large collections of text can be posed using simplified representations — for instance, a list of the words in each volume, together with their frequencies. This dataset represents a first attempt to provide that information for English-language fiction, drama, and poetry published between 1700 and 1922, and contained in the HathiTrust Digital Library.

The project combines two sources of information. The word counts themselves come from the HathiTrust Research Center (HTRC), which has tabulated them at the page level in 4.8 million public-domain volumes. Information about genre comes from a parallel project led by Ted Underwood, and supported by the National Endowment for the Humanities and the American Council of Learned Societies. This project applied machine learning to recognize genre at the page level in 854,476 English-language volumes. Mapping genre at the page level is important because genres are almost always mixed within volumes. Volumes of poetry can have long nonfiction introductions; volumes of fiction can be followed by many pages of publishers' advertisements. Fortunately, text categories of this broad kind (fiction/nonfiction/poetry/drama/paratext) can be identified fairly accurately by statistical models.

Contents

<table>
<thead>
<tr>
<th>Type</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>volumes of fiction</td>
<td>101,948</td>
</tr>
<tr>
<td>volumes of poetry</td>
<td>58,724</td>
</tr>
<tr>
<td>volumes of drama</td>
<td>17,709</td>
</tr>
</tbody>
</table>

Resources

- Spelling normalization and OCR correction
- Methods used for genre
- Fiction
Page-level maps of genre from English-language monographs in the HathiTrust Digital Library, 1700-1922 (Ted Underwood’s work)

—Goal:
 • To show how:
 — literary scholars can use machine learning
 » for selecting genre-specific collections
 • from digital libraries
 — What genres have been extracted?
 • “Imaginative literature”
 — Prose fiction, drama, poetry
 » Assumed to be non-overlapping, discrete categories
Choice of genres

– Prose fiction, drama, poetry, non-fiction prose, paratext
 • Assumed to be non-overlapping, discrete categories

– Why these genres?
 • Broad categories like these easier to map
 – As we descend from broad categories to subgenres (e.g. “detective fiction”, “verse tragedy”, etc.),
 » taxonomies become more like “folksonomies”
 • less sharp categories
HathiTrust and Genre Dataset

– Genre Mapping project (Ted Underwood) and Feature Extraction project (HathiTrust) both *mapped volumes at page level*

 • Created opportunity for collating results to produce genre-specific feature datasets

– The provided genre datasets aggregate pages *at the volume level*

 » E.g.:

 • The provided fiction dataset:
 • contains only volumes that were identified as containing fiction
 • aggregates the wordcounts for only those pages that were identified as fiction
Assumptions behind how genre was mapped

- Genre as “empirical social problem”
 - Not as constituted by “formal characteristics”
- Different strategies adopted for different aspects of the problem
- Overall strategy is supervised machine learning, mapping each page to a genre
 - Training set created by group of five human readers
 - Performed closed readings of training set and assigned categories
 - 1 graduate student and 4 undergraduate students
 - Agreed with each other only 76% of the time
 - But agreed 94.5% of time about broad categories
Assumptions behind how genre was mapped (contd.)

• *Predictive* rather than *explanatory* model of genre
 • Explanatory models:
 • Try to identify key factors behind a phenomenon
 • Identify deep structure
 • Capture causal logic
 • Predictive models:
 • Do not try to capture causal logic
 • Establish mapping between predictor variables and response variables
 • Do not require identification of key variables
 • Do not require structured data
 • Employ a “skeptical epistemology”
 • Appropriate for the humanities
 • as the humanities grapple with concepts that are not well-understood
Different combinations of methods and features were tried

 - Best method was found to be: regularized logistic regression
 - “regularization” in a supervised learning algorithm is a technique to prevent overfitting

 - Best features were selected to be 1062 features maximizing predictive accuracy (by optimizing a weighted average of precision and recall)
 - Consisted of:
 - 1034 words
 - 36 “structural features” (other page-level or volume-level information)

With this best methods and best feature set, the regularized logistical regression model was trained for each genre:

 - using a one-versus-all training (each genre contrasted to all other genres collectively)

 - page-sequence information about genre was used to train a Hidden Markov Model that smoothed page-level predictions
How the training data was selected

• To ensure representativeness of sampling of training data:
 – a previous round of volume-level genre classification using Naïve Bayes classification
 served as guide to dividing corpus into volumes for subsequent random sampling

• Training data labeled by hand to match specific goal of project:
 – Separating the data into a few broad categories that literary critics distinguish
 between in practice:
 • Prose fiction, Drama, Poetry
 – Everything else categorized as prose non-fiction

• Historical specificity was traded off for increased training data volume:
 – Rather than train different models for each century separately,
 • as much training data as possible was used:
 – One training set covering the years 1700-1899 (to make predictions about volumes in this range)
 – Another training set covering the years 1725-1922 (to make predictions about volumes in the range 1900-1922)
Empowering users to tune tradeoff between precision and recall

• Users were allowed to trade off precision against recall as needed:
 – This means:
 • Allowing users to make the genre definitions
 – more inclusive (higher recall but lower precision); or
 – less inclusive (higher precision but lower recall)
 – This capability was provided at volume level, not at page level
 • as most users are likely to treat texts as volumes.
 – Volume-level confidence metrics were computed and recorded:
 » on the basis of:
 • page-level confidence metrics; and
 • additional volume-level evidence
Empowering users to tune tradeoff off between precision and recall (contd.)

- Users can define their own corpus of fiction, poetry or drama,

 - either by:

 - setting whatever confidence threshold they desire; and

 - pulling out volumes that meet that threshold

 - or by:

 - choosing from some special pre-packaged “filtered” collections for these three genres

 - (which have been provided by identifying, for each genre, confidence thresholds that increase precision for relatively little loss of recall)
Empowering users to tune tradeoff between precision and recall (contd.)

Precision-recall graph for fiction datasets (left) and poetry datasets (right), limited to various thresholds of confidence.

These curves are “incorporated” into the JSON metadata for all volumes where any pages of poetry, drama or fiction are predicted. So, a researcher concerned (for example) that the provided dataset excludes too much poetry, can recreate his/her own filtered dataset with a confidence threshold that creates his/her desired precision/recall trade-off.
Best features were selected to be 1062 features maximizing predictive accuracy

- Selected by grouping pages into categories corpus was planned to be classified into
 - Top 500 words selected from each category
 - Words from each category grouped into a master list limited to the top N most frequent words
- Consisted of:
 - 1034 words
 - 26 “structural features” (other page-level or volume-level information):
 - per-page features:
 - \textit{wordsPerLine}, \textit{totalWords} (highly predictive for fiction), \textit{capRatio} (highly predictive for poetry), \textit{etc.}
 - volume-level features:
 - metaFiction (information in metadata indicating fiction), \textit{etc.}
 - 10 categories:
 - e.g. \textit{personalname}, \textit{placename}, \textit{propernoun}, \textit{romannumeral}, \textit{arabic1digit}, \textit{etc.}
Performance of model

• On broad categories:
 • Prose fiction, drama, poetry, non-fiction prose, paratext:
 • Achieved 93.5% accuracy overall
 • Compared to 94.5% for the 5 human readers
 • Weak but slight correlation between pages where model failed, and pages where human readers disagreed
 • Performance always has a tradeoff between precision and recall
 • Precision:
 • Better precision means minimization of the proportion of false positives to true positives
 • Recall:
 • Better recall means minimization of the proportion of false negatives to true negatives
Plotting lexical trends within a specific genre dataset (e.g. fiction)

- Chris Forster (Syracuse University) recently made a blog post showing simple explorations of the genre dataset using R.
- One such script plots normalized frequencies for any word in a given genre
 - E.g. A plot of normalized frequencies for the word ‘america’ in the fiction dataset:

![Graph showing occurrence of 'america' over time](image)
Plotting lexical trends within a specific genre dataset: What is happening under the hood?

The file fiction_yearly_summary.csv in the fiction dataset contains:

- per-year frequencies of top 10,000 most frequently occurring tokens in fiction dataset.

R script for plotting trends in genre dataset for words occurring among top 10,000 (adapted from Chris Forster):

```r
require(ggplot2)
yearly.summary <- read.csv("~/Downloads/fiction_yearly_summary.csv")
lady <- subset(yearly.summary, yearly.summary$word=='america')
yearly.total <-
    subset(yearly.summary,yearly.summary$word=='#DICTIONARYWORD')
yearly.total <- yearly.total[c('year','termfreq')]
colnames(yearly.total) <- c('year','total')
america <- subset(yearly.summary, yearly.summary$word=='america')
lady.normalized <- merge(america, yearly.total, by=c('year'))
ggplot(america.normalized, aes(x=america.normalized$year, y=(america.normalized $termfreq/america.normalized$total)))+ geom_line() + geom_smooth() + xlab('Year') + ylab('Normalized Frequency of "america"') + ggtitle("Occurences of 'america' in the Dataset")
```
Plotting lexical trends within a specific genre dataset: What is happening under the hood? (contd.)

• What if you are interested in a word that does not occur top 10,000 most frequently occurring tokens?
 – You will need to traverse files for individual volumes (loop over all the files)

• For each file:
 – open the file
 – look for occurrence of the word
 – If it occurs, add its count to the total
Plotting trends within the fiction dataset (contd.)
“lady” versus “woman”

• The plot of normalized occurrences of "lady" has an inverted 'v'-shaped curve:
 – slowly and steadily rising until about 1810, and
 – slowly and steadily falling subsequently.

• Plot of normalized occurrences of 'woman' remain more or less constant until about 1840,
 – subsequently keeps rising slowly and steadily.

• Hypothesis seems borne out:
 – As we reach modern times,
 » occurrences of "lady" start declining in fiction
 » occurrences of "woman" increase.
Plotting trends within the fiction dataset (contd.) “lady” (top plot) versus “woman” (bottom plot)
The HathiTrust+Bookworm project

Team Members:

– Current:
 J. Stephen Downie, University of Illinois, Urbana-Champaign
 Erez Lieberman Aiden, Baylor College of Medicine
 Benjamin Schmidt, Northeastern University
 Robert McDonald, Indiana University
 Loretta Auivil, University of Illinois, Urbana-Champaign
 Peter Organisciak, University of Illinois, Urbana-Champaign
 Muhammad Shamim, Baylor College of Medicine
 Sayan Bhattacharyya, University of Illinois, Urbana-Champaign
 Leena Unnikrishnan, Indiana University

– Past:
 Colleen Fallaw, University of Illinois, Urbana-Champaign
 Matt Nicklay, Baylor College of Medicine

Funded by an NEH Implementation Grant (2014-2016)
Current prototype of HT+BW

• Approximately 14 million books
• Approximately 4.8 million of the 14 million books are in the public domain
 – Current prototype of HT+Bookworm set up to work with these 4.8 million books
Hooking up HTDL with Bookworm: Advantages?

First advantage: Good metadata!

• HTDL has good and detailed **metadata**
 – (relatively speaking!)
 – historically, metadata was meticulously created by librarians from contributing libraries
 ➢ allows for highly faceted queries:
Hooking up HTDL with Bookworm: Advantages?
Second advantage: HTDL’s workset functionality

• HTDL has a rich notion of workset
 – A workset is a user-determined sub-collection from the HTDL’s collection
 • so called because it is a set of books meant to be worked on by algorithms for text analysis
 – HT+Bookworm leverages the workset functionality
 • HT+Bookworm will eventually:
 – *query* a specific workset (rather than the entire collection)
 – *generate* a specific workset from the result of a faceted query
Hooking up HTDL with Bookworm: Advantages?
Second advantage: HTDL’s workset functionality (contd.)

Workset creation and refinement workflow
How *scientific inquiry* meets *humanistic inquiry* in culturomics as performed by HT+Bookworm

• Scientific inquiry concerns:
 – *Generalization* across entities
 – Discovery of patterns *across* entities
 – Epistemological determination

• Humanistic inquiry concerns:
 – Close engagement with *specific* entities
 – Attending to singular instances among entities
 – Epistemological skepticism
How scientific inquiry meets humanistic inquiry as performed by HT+Bookworm (contd.):

Three use cases

• How:
 • change in social context over time correlates with change in preponderance of one word-concept over another over time
 • occurrences of related word-concepts in multiple languages/places compare with each other over time
 • metaphorical associations of a word vary over time
How change in social context across time correlates with change in preponderance of one word-concept over another

Search for *lady* in (Language: English)
Search for *woman* in (Language: English)
How change in social context across time correlates with change in preponderance of one word-concept over another (contd.)

Search for *lady* in (Language: English) AND (Publication Country: United States)
Search for *woman* in (Language: English) AND (Publication Country: United States)
Search for *lady* in (Language: English) AND (Publication Country: United Kingdom)
Search for *woman* in (Language: English) AND (Publication Country: United Kingdom)
How occurrences of related word-concepts in multiple languages/places compare with each other

Search for *liberté* in (Language: French)
Search for *liberty* in (Language: English)
Search for *freedom* in (Language: English)
How occurrences of related word-concepts in multiple languages/places compare with each other (contd.)

Search for *liberté* in (Language: French)
Search for *liberty* in (Language: English) AND (Publication Country: United States)
How occurrences of related word-concepts in multiple languages/places compare with each other (contd.)

Search for liberté in (Language: French)
Search for liberty in (Language: English)
Search for liberty in (Language: English) AND (Publication Country: United States)
Search for liberty in (Language: English) AND (Publication Country: United Kingdom)
How metaphorical associations of a word vary across time

Streamgraph plot of *depression* with Library of Congress categories, between 1850 and 1923: http://bit.ly/1QatsPs
Advanced Collaborative Support (ACS)

• CFP issued approximately once per year
• Award for dedicated HTRC developer support and/or time
• First round of ACS was in spring 2015
• Projects required access at scale, using half a million to a million volumes each
2015 Project Examples

• *Literary Geography at Scale*
 – Matthew Wilkens, University of Notre Dame
• *Off the Books*
 – Michelle Alexopoulos, University of Toronto
• *Taxonomizing the Texts: Towards Cultural-scale models of full text*
 – Colin Allen & Jaimie Murdock, Indiana University
2015 Project Examples:
Literary Geography at Scale

Matthew Wilkens, University of Notre Dame

- Geolocation of world literature
- Will extract and geocode place names from eleven million volumes in HathiTrust
- Pilot analysis completed on 10,000 randomly selected volumes
- Next step: Processing the entire corpus
2015 Project Examples: *Off the Books*

Michelle Alexopoulos, University of Toronto

- Creation of new measures of technological innovation and diffusion
- Analyzes diffusion of technology-related terms
- Will lead to mapping of waves of innovation over time and space
- Will aid in understanding how technological change produces economic change
2015 Project Examples: *Taxonomizing the Texts: towards Cultural-Scale Models of Full Text*

Colin Allen & Jaimie Murdock, Indiana University

- Tests and visualizes topic models leveraging the HTRC Data Capsule
- Shows the relationship between a topic model based on a random sample of volumes and the entire category from which it is drawn
- Proof-of-concept models Library of Congress subject headings and visualizes them using their Topic Explorer tool
Other Projects

- **Word similarity tool** – David Mimno

This table shows the most similar words to a given query word, for each year, in 250,000 pre-1923 books provided by the Hathi Trust Research Center. This collection is a small, random subset of the millions of digitized books held by the Hathi Trust, so these results should be used with caution. The goal of this work is, in fact, to raise questions, not answer them.

We represent each word with the set of words that occur on the same pages as that word. We consider two words to be similar if these sets are similar, indicating that they occur in similar contexts. More similar words are shown in darker text. Years with no dark words probably have few instances of the query word.
Acknowledgements: HTRC Team

HTRC @ Illinois
(GSLIS and the University Library):
- Stephen Downie
- Beth Sandore Namachichivaya
- Tim Cole
- Loretta Auivil
- Sayan Bhattacharyya
- Boris Capitanu
- Eleanor Dickson
- Ryan Dubnicek
- Harriett Green
- Peter Organisciak
- Megan Senseney

Indiana University
- Beth Plale
- Robert McDonald
- Angela Courtney
- Nicholae Cline
- Miao Chen
- Samitha Liyanage
- Leena Unnikrishnan
- Milinda Pathirage
- Leanne Mobley
Get Involved!

HTRC Announcements:

htrc-announce-l @ list.indiana.edu

HTRC User Group:

htrc-usergroup-l @ list.indiana.edu
Questions?

Eleanor Dickson
Visiting HTRC Digital Humanities Specialist
dicksone@Illinois.edu

Sayan Bhattacharyya
Postdoctoral Research Associate, GSLIS
sayan@illinois.edu