
	 1	

CREATING DIGITAL EDITIONS: AN INTRODUCTION TO THE TEXT ENCODING INITIATIVE (TEI)
http://www.lib.umich.edu/publishing-production/creating-digital-editions-introduction-text-encoding-initiative-tei

Introductory	 TEI	 encoding	 1	
This exercise is based on one used as part of “From Text Encoding to Digital Publishing”, a two-day
workshop held at the National University of Ireland, Galway, and sponsored by the Digital Humanities
Observatory, a project of the Royal Irish Academy.

In this exercise, you will:

• Get to know the <oXygen/> XML editor
• Encode an excerpt of an article, “The Act of Choice” by Richard Holton

(Philosophers' Imprint 6.3), using the TEI Lite schema
• Transform your XML to XHTML (for display in a Web browser) and to PDF,

using the basic TEI transformations that come bundled with the <oXygen/>
software.

This exercise is a bit broader in focus than those that follow. You will encode a relatively
large amount of text at a high level, using just a handful of elements, in order to get a
sense of the structure of a TEI document and what you can do with it.

The exercise assumes that you have a working installation of <oXygen/> version 14 as
well as a single directory (probably named encoding exercise 1) with the following files in it:

• holton_template.xml
• holton.pdf
• holton.mac.txt
• holton.win.txt
• teilite.rng

Part	 A:	 Getting	 started	
1. Open the <oXygen/> editor (with a blue icon, not the “author” mode with a red

icon).
2. If there are a lot of panels to the left and right of the main window content, let’s

first clear them out of the way: they’re for advanced users. Close all of them. (If
you ever want to reopen any of them, you can find them all under Perspective →
Show View.)
In <oXygen/>, open the file holton_template.xml. (File →Open)

3. To avoid overwriting this template (in case you want to consult it later), choose
File → Save As… and save the file as myfirstTEI.xml in the same directory as the
rest of the files. (It’s important that this file be stored in the same location as the
other files, so that <oxygen/> can find the schema against which to validate your
document.)

You might notice an error message at the bottom of the <oXygen/> window about the
when attribute. You can ignore this for now: we will fix this problem shortly.

Note that if you click the little triangles next to certain line numbers, you can “fold”

	 2	

elements, hiding all of their content. If you fold line 5 and then line 41, you will see that, at the
highest level, this TEI document consists of a TEI element (at “the root”) and two child
elements: teiHeader and text. In Part B we will fill in teiHeader, and in
Part C we will fill in text.

Part	 B:	 Encoding	 the	 bibliographic	 information	 (“the	 header”)	
The teiHeader contains metadata about the TEI document and its source. It has four child
elements: fileDesc, encodingDesc, profileDesc, and revisionDesc (we'll talk
more about these later) According to the TEI Lite schema, which we're using in this exercise,
only fileDesc is required, but if any others appear, they must be in the order just stated. For
this exercise, we will create metadata for only the fileDesc using the following elements:

title the title of the work (book, article, poem, etc.),

including any subtitles
author the author of the work
respStmt statement of responsibility for the intellectual

content of an
edition (in this case, the electronic edition)

resp phrase describing the nature of responsibility
name proper noun or noun phrase
publicationStmt information concerning the publication or

distribution of an
electronic or other text

sourceDesc a bibliographic citation of the work being
encoded

In your XML document, the skeleton of fileDesc is already in place. In this exercise you’ll
first fill in small pieces of information in titleStmt and publicationStmt, and then
you’ll encode most of sourceDesc yourself.

You should notice several elements containing two question marks, followed by a short phrase,
and then another two question marks. This signals a place where you need to fill in a piece of
information.

1. In between the opening and closing title tags, you’ll find ??title here??. Replace this
text with the title of the article, “The Act of Choice.” Be sure that you leave the opening
and closing tags in place. No need to enclose the title in quotation marks: this punctuation
is not really part of the title but just a convention from print for displaying article titles.
When we encode in XML, we are replacing the print convention (quotation marks) with
<title> tags, which do the work of conveying that this is the title.

2. Do the same for author element: replace ??author here?? with the author's name,

Richard Holton.

3. This document has three respStmt elements. One is already filled in, but you should
supply the content of the name elements in the other two (with your name).

	 3	

Your titleStmt should now look like this (but with your own name as the creator of the
header and the encoder):

Continuing …

4. Next, fill in in the publicationStmt. For today, we are all members of MPublishing,
the unit of the library that publishes Philosophers' Imprint. All the information has
already been filled in except today’s date, which you should supply in any format you
like as the content of the date element.

5. Dates can be written in many ways, and there is often good reason to allow flexibility in
how you capture a date (for example, in order to be faithful how the date was written in
an original manuscript). But a machine can’t process this information (in order to sort a
group of articles by date, for example), unless all the dates are encoded consistently. To
make this possible, TEI provides the when attribute on the date element. This attribute
is used to modify a date element by additionally giving the date in the standard format
defined by the World Wide Web Consortium (W3C). The template contains YYYY-MM-
DD as the default attribute value; change this to give today’s date (using the Gregorian
calendar with Arabic numerals).

6. The last element inside fileDesc is sourceDesc. This is the only element in
teiHeader that describes the source (print, electronic, manuscript, etc.) of the text that
is being encoded, rather than the XML document itself (e.g., this is the place to note the
date that the article was published in a journal, rather than the date that you encoded this
excerpt.) According to the TEI Guidelines, the element bibl contains “a loosely
structured bibliographic citation.” So, we can choose what information to encode, and
how deeply to encode it. To complete this element, in <oXygen/>, open holton.mac.txt or
holton.win.txt (depending on whether you’re using a Windows or Mac machine.) You
can move between this text file and myfirstTEI.xml using the tabs at the top of
<oXygen/>’s editing window. This file contains a transcription of the article excerpt
(which we'll use shortly), as well as some metadata. Copy the journal title, volume, issue

	 4	

number, publication information, and date from holton.txt and paste it in between the
opening and closing bibl elements in myfirstTEI.xml. This free text citation is a valid
use of the bibl element, but we also can use more elements inside of bibl to be more
explicit about the parts of our citation.

We’ll start with the title:

7. Put the cursor in front of the title (before ‘Philosophers' Imprint’). Type a left angle
bracket (<). A menu will pop up showing the names of elements allowed at this point in
the document according to the schema. (As you can see, there are quite a few!). We’re
going to use the title element, and as you start typing its name, the choice of elements
matching your search will decrease. When there’s only one element left, you can press
Enter to choose it. <oXygen/> automatically inserts both the opening and closing tags.
You’ll need to move the closing tag to after the end of the title.

If you don't see a menu of elements available to you, it may mean that <oXygen/> can’t find the
schema that defines the rules for your XML document. Alert an instructor.

Let’s use another method of inserting elements to tag the name of the volume and issue
information, and the publication information. This method won’t require us to move the closing
tag.

8. Highlight 'Volume 6.'

9. Type ⌘ + E (on a Mac) or Ctrl + E (in Windows). A dialogue box opens with a list of the
elements that may be inserted at this point according to the schema. Choose biblScope.
The tags will be inserted before and after the text you highlighted.

10. Click inside the first biblScope tag and add a space. A menu will appear, showing all
the attributes available to you; choose type. Then, click inside the quotation marks. A
menu with the values available to you will appear; choose vol.

11. Do steps 8-10 for 'no. 3,' this time choosing issue instead of vol as the value of the
type attribute of biblScope.

12. Finally, tag the publisher (<publisher>) publication place (<pubPlace>), and date
(<date>) of publication, as you did in the <fileDesc>. Since we don’t know the
exact day that this article was published, we won’t use the when attribute on date this
time.

When you are marking up (encoding) texts, don’t worry about extra spaces, tabs, or carriage
returns (blank lines). These are all called ‘whitespace’, and XML ignores them, reducing all of
these to a single space. Feel free to add blank lines or spaces between elements to make them
more readable as you are working on them.

To help you make the document easy to read, choose Document → Source → Format

and Indent. There’s also a button for this in the toolbar that looks like this: 	 	

	 5	

13. Use File → Save to save changes made so far. Your sourceDesc should look
something like this:

Now, to check that you haven’t made any errors in element names or how they are nested, we’ll
validate the document against the schema.

14. Choose Document → Validate → Validate Document or click the icon with the red

check mark: . In the status bar of the <oXygen/> window (at the bottom), it will say
“Document is valid” or ”Validation – failed.” If the latter, <oXygen/> will tell you what
errors exist and what line numbers to find these on. (The invalid sections of the document
will also be underlined with a red squiggly line.) Fix any errors you encounter. (If you
don’t encounter any errors, try creating one by intentionally misspelling a tag. Once you
validate, you’ll see that <oXygen/> immediately detects this problem.)

Congratulations! You’ve just finished encoding your first header!

Part	 C:	 Encoding	 the	 body	 of	 the	 document	
1. Check that you have removed all instances of ‘??’ in your document in the course of

encoding your header. Use Find → Quick Find… to do this. This menu command opens
a small dialogue box at the bottom of the <oXygen/> window where you can type text to
search for. As you see, the Find menu also offers more advanced search options. If you
find any question marks, finish following the instructions in Part B.

2. Scroll down to the text element. (You may choose to collapse the teiHeader if you would
prefer to keep this text out of sight while working with the body of the document. Use the
little triangle to the left of the opening tag.

3. You should already have holton.txt at hand. Open holton.pdf, as well, as a reference for
the structure of the article. The text in holton_template.xml currently has only one child
element, body. (In TEI, a text can have a front and a back as well, used for front
and back matter such as a preface, forward, appendix, or index.) Inside body, you’ll find
a div element, which indicates a division of text. Adding the type attribute to this div
allows you to enter an arbitrary description of what kind of division this is. In this case,

we'll use article:

	 6	

This div contains a head, which contains the title of the article. Below it, the first section of the
article has already been partially encoded for you. Each of the paragraphs is enclosed in a p, or
paragraph, element.

4. Copy the rest of the text from the excerpt in holton.mac.txt or holton.win.txt, from
“Choice, and how it differs from agency” to the end of the last paragraph before the notes.
Paste all of this into myfirstTEI.xml, starting on a new line after the last </p>. By
default, <oXygen/> will display each paragraph on a single line, and each line will
probably run far out of your window. You may be tempted to press that “format and
indent” button now, but try to resist: if you reformat these lines of text before wrapping
them in their proper elements, <oXygen/> will collapse the lines together and you'll lose
track of where one paragraph ends and where the next begins.

5. Look at holton.pdf to get a sense of the structure of the document. You should be able to
see that the section that you just pasted into your XML document is a subsection of the
article. Indicate this in the structure of your XML document by tagging it as a div. Insert
a type attribute on this div, and give it a value that makes sense to you, such as
section. (If you were encoding a full document, or many documents, you would use a
controlled vocabulary to make sure that all other divs used to mark sections like this
were assigned the same value of type. For our purposes, there is just one subsection to
worry about, so you can call it whatever you want)

6. Using the methods for inserting XML elements given in Part B, tag the title of the section
as a head

7. Now, insert p elements around each paragraph of text that you just pasted in. Each
paragraph should start on its own line (and probably run far off to the right). By clicking
three times, you can highlight an entire line at once, and enclose it in a p element. When
you’re done, you can use the Format and Indent feature to get your paragraphs aligned
readably. You should have created 16 new paragraphs. Don't forget validate the
document!

8. But wait! If you look at holton.pdf, you will see that one paragraph in this excerpt is
really a blockquote! Find the paragraph beginning with “We asked people to tell us….”
Instead of wrapping this paragraph in a p element, use the element quote. Then, on the
opening quote tag, add a type attribute, and give it the value block.

Now we need to encode the notes associated with this excerpt.

9. The selection that we're working with includes the first 17 notes in the article. They're
indicated throughout the text by numbers enclosed in parentheses. The content of these
notes can be found at the end of the transcription of the article.

10. Find note 1 in holton.txt. Copy its contents and paste them into myfirstTEI.xml, replacing
the (1), where the first reference to a note occurs.

11. Wrap the bit of text you just pasted text in a note element, and add two attributes to the
opening tag.

a. First, an n attribute. This indicates the note number, and the value of this attribute
should be 1. Because the note number is captured by this attribute, you don't need
to repeat it in the body of the note, so delete the“1.” from the body of the note.

b. Then, add a place attribute. This attribute describes where the note occurs in the
source text. Choose the value bottom.

	 7	

c. Repeat this with all 17 notes, increasing n by one each time. (If you get tired,
bored, or run out of time, you can feel free to stop. Your document will validate,
and the step of the exercise will work on the notes you have encoded, even if you
don't do all of them)

12. Validate and save your changes.

Part	 D:	 Using	 Transformations	 to	 publish	 your	 TEI	 document	

The Extensible Stylesheet Language (XSL) lets you transform an XML document into
another type of XML document (using XSL Transformations or ‘XSLT’) or into a non-
XML format (using XSL Formatting Objects or ‘XSL-FO’). <oXygen/> includes some
XSL-FO stylesheets for generating PDFs from TEI documents. Let’s use one of the
default stylesheets to make a PDF from myfirstTEI.xml.

1. In <oXygen/>, choose Document → Transformation → Configure
Transformation Scenario.
2. Choose TEI P5 PDF and click Transform now. It will create myfirstTEI.pdf file
in the same directory where myfirstTEI.xml is saved.
3. Open myfirstTEI.pdf in a PDF viewer.

Did it work? What do you see?

• Each note should be indicated in the text by its n value, supsercripted. The notes
themselves appear at the bottom of the page as footnotes.

• The <div type=”section”> should be a subsection of <div
type=”article”>

Now try the TEI P5 XHTML transformation scenario. This will convert your XML to
XHTML that can be processed by a standard web browser.

What similarities and differences do you see between the PDF and the XHTML?

If you're interested and familiar with HTML, you may wish to open the transformed
document, myfirstTEI.html in <oXygen/> (you will find it and your PDF in the same
directory as your other XML documents), and look at how the TEI elements were mapped
to HTML elements.

Part	 F:	 A	 challenge	 (in	 case	 you	 have	 time)	
In holton.pdf, you'll notice many instances of italicized text that was lost in our encoding
and transformation process. How would you encode these words to capture the meaning
of the italics in your XML? (Hint: don't focus on recreating the appearance of italics, but
instead on what the italics are supposed to convey to a human reader: emphasis? foreign
word? something else?)	

